设f(x)是定义域(0,正无穷)上的单调递增函数,且对定义域内任意x,y都有f(xy)=f(x)+f
都有f(xy)=f(x)+f(y),f(2)=1,求使不等式f(x)+2
人气:326 ℃ 时间:2019-11-13 07:08:45
解答
记得先采纳呀^^
f(3-x)
≥f(x)+2
=f(x)+1+1
=f(x)+f(2)+f(2)
=f(2x)+f(2)
=f(4x)
即f(3-x)≥f(4x)
因为单调增函数
∴3-x≥4x,即x≤3/5
又∵3-x>0,x>0
∴0<x<3
综上,所以0<x≤3/5
推荐
- 设f(x)是在定义(0,+∞)上的单调递增函数,且对定义域内任意x,y都有f(xy)=f(x)+f(y)且f(2)=1,求使不等式f(x)+f(x-3)≤2成立的x的取值范围
- 设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-1
- 已知函数f(x)是定义在(0,∞)上的单调递增函数,且对定义域内任意的x、y都有f(xy)=f(x)+f(y)
- 设f(x)是定义在(0,+∞)的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)f(y),f(2)=1,求使不等式f(x)+f(x-3)≤2成立的x的取值范围
- 设f(x)是定义在(0,+∞)上的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)+f(y),f(2)=1,
- 现在英国和美国货币中还有penny,dime,nickel,quarter这些符号吗?
- The poor man ----(be) hungry for quite a few days 中间填什么为什么
- 在晴朗的夏日中午,如果往叔或花的叶子上浇水,常会使叶子烧焦,你知道是为什么吗?
猜你喜欢