证明:2(1-sina)(1+cosa)=(1-sina+cos)^2.
人气:108 ℃ 时间:2020-01-28 20:32:38
解答
(1-sina+cosa)^2
=(1-sina)^2+2cosa(1-sina)+(cosa)^2
=1-2sina+(sina)^2+2cosa-2sinacosa+(cosa)^2
=1+[(sina)^2+(cosa)^2]-2sina+2cosa-2sinacosa
=1+1-2sina+2cosa-2sinacosa
=2-2sina+2cosa-2sinacosa
=2(1-sina+cosa-sinacosa)
=2[cosa(1-sina)+(1-sina)]
=2(1-sina)(1+cosa)
推荐
猜你喜欢
- 有甲乙两桶水,如果向乙桶倒入10千克水,两桶水就一样重,后面的在问题补充里
- 怎么解80%X-40%X=3这个方程
- 商店搞促销,买四送一,这实际是打()折销售;超市里许诺,买多少送多少,这是打()折销售.
- 在等式tan30+tan10=( )/sin50的括号中填写一个实数,使得等式恒成立,则应填入的实数为
- 常数项为什么是同类项
- I can do it with my friends用英语怎么回答
- 求回环词,如蜜蜂-蜂蜜
- 碘的升华是吸热反应还是放热反应