∫/(1+sinx+cosx)dx
人气:385 ℃ 时间:2019-12-13 11:32:44
解答
设t=tan(x/2),则x=2arctant,sinx=2t/(1+t²),cosx=(1-t²)/(1+t²),dx=2dt/(1+t²)
故 ∫dx/(1+sinx+cosx)=∫[2dt/(1+t²)]/[1+2t/(1+t²)+(1-t²)/(1+t²)]
=∫[2dt/(1+t²)]/[2(1+t)/(1+t²)]
=∫dt/(1+t)
=ln│1+t│+C (C是积分常数)
=ln│1+tan(x/2)│+C.
推荐
猜你喜欢
- 正方形的边长增加10%,它的面积比原来增加_%.
- THE BIKE……WAS LOET YESTERDAY.The songs …… are very popular.l like the book …… .
- 孔子论述人要虚心学习,取长补短的句子是
- the ice is so thin that wen can't skate on it 同义句
- 3.The government should____poor families with social services.
- 数列1,3,6,10,15.的通向公式是?
- 设a=2^0.3,b=0.3^2,c=log2 *0.3,求a,b,c的大小
- 核苷酸的种类为什么有8种?哪八种?