f(x)具有三阶导数,且lim(x->0)f(x)/x*x=0,f(1)=0,证明在(0,1)内至少存在一点ξ,使f'''(ξ)=0
人气:144 ℃ 时间:2019-08-19 04:47:37
解答
因为lim (x->0)f(x)/x^2=0所以这个极限为0/0型,否则结果为无穷,所以f(0)=0,又f(1)=0由罗尔定理,存在ξ1属于(0,1)使得f'(ξ1)=00/0型极限,洛必达得lim (x->0)f'(x)/2x=0又是0/0型,所以f'(0)=0即f'(ξ1)=f'(0)=0由罗尔...
推荐
- 设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
- 若f(x)有二阶导数,证明f''(x)=lim(h→0)f(x+h)-2f(x)+f(x-h)/h^2.
- 设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2
- 若f(x)有二阶导数,且f(0)=f(1)=0,lim(x→0)[f(x)/x]=0,则在(0,1)内至少存在一点ξ,使f"(ξ)=0
- f(0)=0 存在极限lim(x->0)f(x)/x 求f(0)点的导数
- 人本主义观点是什么?具体解释一下
- 英语翻译
- 方程x平方-2x+m=0的一个根为-3则另一个根为()m的值为什么
猜你喜欢