| 1 | 
| x | 
| x−1 | 
| x | 
∴f(x)在区间[1,+∞)上是递增的
当0<x<1时f(x)=1-x-lnx f′(x)=-1-lnx<0
∴f(x)在区间(0,1)上是递减的
f(x)在(0,1)内单调递减,在【1,+∞)上单调递增,故当x=1时,f(x)有最小值f(1),且f(1)=0
(2)由(1)x>1时,有x-1-lnx>0即
| lnx | 
| x | 
| 1 | 
| x | 
∴
| ln22 | 
| 22 | 
| ln32 | 
| 32 | 
| lnn2 | 
| n2 | 
| 1 | 
| 22 | 
| 1 | 
| 32 | 
| 1 | 
| n2 | 
| 1 | 
| 22 | 
| 1 | 
| 32 | 
| 1 | 
| n2 | 
| 1 | 
| 2•3 | 
| 1 | 
| 3•4 | 
| 1 | 
| n(n+1) | 
| 1 | 
| 2 | 
| 1 | 
| 3 | 
| 1 | 
| 3 | 
| 1 | 
| 4 | 
| 1 | 
| n | 
| 1 | 
| n+1 | 
| 1 | 
| 2 | 
| 1 | 
| n+1 | 
| (n−1)(2n+1) | 
| 2(n+1) | 
