a、b、c为正实数,求[(a+b)^2+(a+b+4c)^2](a+b+c)/abc的最小值. [求高手具体解释啊``]
解:由均值不等式,得
(a+b)^2+(a+b+4c)^2
=(a+b)^2+[(a+2c)+(b+2c)]^2
>=(2根ab)^2+[2(根(2ab))+2(根(2bc))]^2
=4ab+8ac+8bc+16c根(ab)
于是,[(a+b)^2+(a+b+4c)^2](a+b+c)/abc
>=[4ab+8ac+8bc+16c(ab)](a+b+c)/abc
=(4/c+8/b+8/a+16/根ab)(a+b+c)
=8(1/2c+1/b+1/a+1/根ab+1/根ab)(a/2+a/2+b/2+b/2+c)
>=8[5(1/2a^2b^2c)^(1/5)]×[5(a^2b^2c/2^4)^(1/5)]=100
当且仅当a=b=2c>0时,上式取等号,
故原式最小值为100.
这是我找到的那个答案,
但是,
=(4/c+8/b+8/a+16/根ab)(a+b+c)①
=8(1/2c+1/b+1/a+1/根ab+1/根ab)(a/2+a/2+b/2+b/2+c)②
>=8[5(1/2a^2b^2c)^(1/5)]×[5(a^2b^2c/2^4)^(1/5)]=100③
①到②为什么整理成这种形式,②到③是怎么得的,有没有用什么公式,怎么出来一个五次根下?puzzle
人气:218 ℃ 时间:2020-04-06 18:17:46
解答
=(4/c+8/b+8/a+16/根ab)(a+b+c)①=8(1/2c+1/b+1/a+1/根ab+1/根ab)这个括号是提取公因数,没什么好说的.对于(a/2+a/2+b/2+b/2+c)那是因为第一步等号成立已经限定了a=b=2c,故这个括号里的项也必须分称这种形式,并且项数...
推荐
- 一直实数a,b,c满足a+b+c=2,abc=4,求a,b,c中最大者的最小值
- 已知a、b、c均为实数,且a+b+c=0,abc=2,求|a|+|b|+|c|的最小值.
- 5.已知实数a,b,c满足:a+b+c=2,abc=4.(1)求a,b,c中最大者的最小值 (2)求|a|+|b|+|c|的最小值
- 已知a、b、c均为实数,且a+b+c=0,abc=2,求|a|+|b|+|c|的最小值.
- 已知a、b、c均为实数,且a+b+c=0,abc=2,求|a|+|b|+|c|的最小值.
- 某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元. (1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各
- 某物体做直线运动,先以5M/S的速度匀速运动4S,又以2.5M/S2的加速度继续运动4S,最后做匀减速直线运动
- i still remember the college and the teachers i visited in london years old 中间填什么 who 还是that 为什么
猜你喜欢