> 数学 >
已知,如图,在三角形ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,求证:∠FDE=90°-1/2∠A

人气:477 ℃ 时间:2019-08-18 05:41:35
解答
证明:
∵内切圆I和边BC、CA、AB分别相切于点D、E、F
∴BF=BD【从圆外一点引圆的两条切线长相等】
∴∠BDF=∠BFD=(180º-∠B)÷2=90º-½∠B
∵CD=CE
∴∠CDE=∠CED=(180º-∠C)÷2=90º-½∠C
∴∠FDE=180º-∠BDF-∠CDE=180º-(90º-½∠B)-(90º-½∠C)
=½∠B+½∠C=½(∠B+∠C)
=½(180º-∠A)
=90º-½∠A
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版