根据题意得,
|
由①得,x≥5,
由②得,x≤7,
∴,5≤x≤7,
∵x为正整数,
∴x=5或6或7,
因此,有3种租车方案:
方案一:租甲种货车5辆,乙种货车11辆;
方案二:租甲种货车6辆,乙种货车10辆;
方案三:租甲种货车7辆,乙种货车9辆;
(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16-x)辆,设两种货车燃油总费用为y元,
由题意得,y=1500x+1200(16-x),
=300x+19200,
∵300>0,
∴y随x值增大而增大,当x=5时,y有最小值,
∴y最小=300×5+19200=20700元;
方法二:
当x=5时,16-5=11,
5×1500+11×1200=20700元;
当x=6时,16-6=10,
6×1500+10×1200=21000元;
当x=7时,16-7=9,
7×1500+9×1200=21300元;
答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.