(1-1/2²)(1-1/3²)(1-1/4²)...(1-1/9²)(1-1/10²)
=(2²-1)(3²-1)(4²-1)...(9²-1)(10²-1)/(2²*3²*4²*...9²*10²)
=(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)...(9-1)(9+1)(10-1)(10+1)/(2²*3²*4²*...9²*10²)
从上式可以看出:(2+1)(4-1)=3²,(3+1)(5-1)=4²,.,(8+1)(10-1)=9²
原式=(2-1)(3-1)((9+1)(10+1)*3²*4²*...9²/(2²*3²*4²*...9²*10²)
=1*2*10*11/(2²*10²)
=11/20