高中抛物线问题
已知抛物线C:y^2=4x,O为原点,直线L:kx-y-1=0与抛物线C交于两点A、B
(1)K=2,求向量OA*向量OB的值
(2)K变化时求向量OA*向量OB的最小值
人气:290 ℃ 时间:2020-05-05 08:52:09
解答
OA*OB=(x1+y1i)*(x2+y2i)
=(x1+(kx1-1)i)*(x2+(kx2-1)i)
=(1-k^2)x1*x2+k(x1+x2)-1+[2kx1x2-(x1+x2)]i
=(1-k^2)/k^2+k*(2k+4)/k^2-1+[2k/k^2-(2k+4)/k^2]i
=(4k+1)/k^2-(4/k^2)i
将y=kx-1代入抛物线方程,可得x1*x2及x1+x2的含k代数式,就可得到以上结论
当k=2时,OA*OB=2.25-i
第二问问法有错误
推荐
- 已知抛物线y^2=x 及直线L:y=x-4 ,是否存在正方形ABCD,其顶点A、C在L上且顶点B、D在抛物线上?若存在,求出正方形的边长;若不存在,说明理由.
- 已知抛物线y²;=4x的焦点为F,AB是过焦点F的弦,且直线AB 的倾斜角为45度,则三角形OAB的面积是____.我算的结果是2,答案是2倍根号2,我算错了吗?我算的两个y值分别为1-根号2和1+根号2
- 定长为5的线段AB的两个端点在一抛物线y^2=2px上移动,求AB中点M到y轴的最短距离
- 高中抛物线题
- 若一直线与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,点O在直线AB上的射影为D(2,1),求抛物线方程.
- 一个表面积为36平方分米的正方体,沿一个面切成4个长方体后,表面积会增加多少?
- 四十五分之四除以二又七分之六=
- y^2=-x^4+16的图像怎么画
猜你喜欢