计算∫∫D(1/(4+x^2+y^2)dxdy),其中D是由曲线x^2+y^2
人气:374 ℃ 时间:2020-06-14 01:31:53
解答
用极坐标啊
x=pcosa,y=psina
x^2+y^2<=4
p∈[0,2]
a∈[0,π/2]
∫∫(1/(4+x^2+y^2)dxdy
=∫[0,π/2] da∫[0,2](1/(4+p^2)*pdp
=a[0,π/2] *1/2ln(4+p^2)[0,2]
=π/2*1/2ln2
=π*ln2/4
推荐
猜你喜欢
- 已知(4x+3y-1)2平方+|3-y|=0求xy和x+y的值.
- 过点P(cosa,sina) (-π/2〈a〈0),且以OP(O为平面直角坐标系的原点)为法向
- 一个数的二分之一比这个数的 25%多75,求这个数
- 二项式定理C括号里的数字怎么算,如C(50,0),C(50,1),C(50,2).
- 沿一面墙用篱笆围一个羊圈长45米,宽23米,这个羊圈占地面积多少
- “善学者,假人之长以补其短.
- 复数(1-i)2的虚部为_.
- 把l y s l w o 组成一个单词