> 数学 >
总体X的方差a的平方的无偏估计量是什么?
人气:432 ℃ 时间:2020-06-16 22:49:09
解答
对总体X进行n次抽样,得到X1,X2,……,Xn
平均值X`=(X1+X2+...+Xn)/n
X方差的无偏估计量为:
S(n-1) = [(X1-X`)^2+(X2-X`)^2+...+(Xn-X`)^2]/(n-1)
证明如下:
E[Xi^2] = [EX]^2 + DX
E[X`] = EX D[X`] = DX/n
E[X`^2] = [EX]^2 + DX/n
E[Xi·X`] = E[Xi^2]/n + (n-1)[EX]^2/n
E[S(n-1)] = [ 1/(n-1) ] · { nE[Xi^2] - 2nE[X`·Xi] + nE[X`^2] }
= [ 1/(n-1) ] · n · [ (n-1)DX/n ]
= DX
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版