(1)方案一付款:30×90×(1-30%)+90×100×(1-15%)=9540元;
方案二付款:(30×90+90×100)×(1-20%)=9360元,
∵9540>9360,9540-9360=180元,
∴选用方案二更划算,能便宜180元;
(2)依题意得:x+2x+1=100,
解得:x=33,
当总件数不足100,即x<33时,只能选择方案一的优惠方式;
当总件数达到或超过100,即50>x≥33时,
方案一需付款:90(1-30%)x+100(1-15%)(2x+1)=233x+85,
方案二需付款:[90x+100(2x+1)](1-20%)=232x+80,
∵(233x+85)-(232x+80)=x+5>0.
∴选方案二优惠更大.
方案三:x≥50时,A商品采用方案一优惠;B商品采用方案二优惠!此时需付款223x+80(元),优惠最大.