m |
n |
∴sinC=sin2C=2sinCcosC,
∴cosC=
1 |
2 |
∵C∈(0,π),∴C=
π |
3 |
(2)∵sinA,sinB,sinC成等差数列,
∴sinA+sinC=2sinB,
由正弦定理可知a+b=2c,
又∵
CA |
AB |
AC |
∴
CA |
CB |
π |
3 |
由余弦定理得:c2=a2+b2-2abcosC=(a+b)2-3ab=4c2-108,
∴c2=36,解得c=6.
∴S△ABC=
1 |
2 |
1 |
2 |
| ||
2 |
3 |
m |
n |
m |
n |
CA |
AB |
AC |
m |
n |
1 |
2 |
π |
3 |
CA |
AB |
AC |
CA |
CB |
π |
3 |
1 |
2 |
1 |
2 |
| ||
2 |
3 |