求该函数的间断点,并判断其类型.f(x)=arctan(1/x^2-3x+2)
人气:141 ℃ 时间:2020-03-17 08:24:44
解答
x^2-3x+2 = (x-1)(x-2) = 0=> x=1,x=2
x->1- ,1/( x^2-3x+2) -> +∞, arctan(1/x^2-3x+2) -> π/2
x->1+ ,1/( x^2-3x+2) -> -∞, arctan(1/x^2-3x+2) -> -π/2
=》 x=1 为第一类跳跃间断点
x->2- ,1/( x^2-3x+2) -> -∞, arctan(1/x^2-3x+2) -> - π/2
x->1+ ,1/( x^2-3x+2) -> +∞, arctan(1/x^2-3x+2) -> π/2
=》 x=2 为第一类跳跃间断点
推荐
猜你喜欢
- 有关基因工程的基本工具的几个简答题.
- (1)在微风中,在阳光下,燕子斜着身子在天空中掠过,“唧”的一声,已由这边的稻田上,飞到那边的柳树下了;还有几只横掠过湖面,剪尾或翼尖偶尔沾了一下水面,那小圆晕便一圈一圈地荡漾开去.这一段描写了小燕子活泼机灵的特点.
- 正五边形能不能密铺、正八边形呢?
- 一个圆形舞台,直径是20米,它的周长是多少米?如果在舞台上铺设每平方米80元的木板,至少需要多少元?
- 10-20毫克/千克的赤霉素+0.3%的尿素是什么意思
- 当铝原子变成离子 那么它的核电荷数是多少
- 反法西斯战争的有哪些国家
- 当√2-x有意义时,化简√x2-4x+4-√x2-6x+9的结果