长方体的长、宽、高分别为正整数a•b•c,且满足a+b+c+ab+bc+ac+abc=2006,那么这个长方体的体积为______.
人气:459 ℃ 时间:2020-04-06 11:26:06
解答
由已知得:
a+b+c+ab+ac+bc+abc
=(a+ab)+(ac+abc)+(c+bc)+b
=a(1+b)+ac(1+b)+c(1+b)+(1+b)-1
=(1+b)(a+ac+c+1)-1
=(1+b)[(a+ac)+(c+1)]-1
=(1+b)[a(1+c)+(1+c)]-1
=(1+b)(a+1)(1+c)-1
=(1+a)(1+b)(1+c)-1=2006
所以(1+a)(1+b)(1+c)=2007=3×3×223
由于题目只是求体积abc的值,所以不必讨论a、b、c的大小顺序,可得:
1+a=3,
1+b=3,
1+c=223,
解得:a=2,b=2,c=222.
因此,体积=abc=2×2×222=888.
故答案为:888.
推荐
- 长方体的长、宽、高分别为正整数a•b•c,且满足a+b+c+ab+bc+ac+abc=2006,那么这个长方体的体积为_.
- 长方形的长,宽,高分别为正整数a,b,c,且满足a+b+c+ab+ac+bc+abc=2006,那么这个长方体的体积为( )
- 问一道数学题:长方体的长宽高分别是a,b,c,且满足a+b+c+ab+bc+ac+abc=2006,那么abc为多少?
- 1、长方体的长、宽、高分别为正整数,且满足a+b+c+ab+bc+ac+abc=2006,求长方体的体积?
- 长方体的长、宽、高分别为正整数a•b•c,且满足a+b+c+ab+bc+ac+abc=2006,那么这个长方体的体积为_.
- 4个连续奇数的最小公倍数是315,这四个奇数中最大的一个数是( )
- 艇在静水中航行的速度是10km/h,当它在流速是2km/h的河水中保持船头垂直于河岸的方向渡河时,求合速度的大小.
- 某工程由甲乙两队合做6天完成,厂家需付甲乙两队共8700元;乙丙两队合做10天完成,厂家需付乙丙两队共9500元;甲丙两队合做5天完成全部工程的三分之二,厂家需付甲丙两队共5500元.
猜你喜欢