> 数学 >
求∫arctan(1+√x)d(x)
人气:247 ℃ 时间:2020-08-30 07:07:42
解答
令1+√x=t,
则x=(t-1)²,
所以
∫ arctan(1+√x)dx
=∫ arctant d[(t-1)²] 使用分部积分法
=(t-1)² *arctant - ∫ (t-1)² d(arctant)
=(t-1)² *arctant - ∫ (t-1)²/(1+t²) dt
=(t-1)² *arctant - ∫ (t²-2t+1)/(1+t²) dt
=(t-1)² *arctant - ∫ 1- 2t/(1+t²) dt
=(t-1)² *arctant - t +ln|1+t²| +C 代入x=(t-1)²
=x *arctan(1+√x) - (1+√x) + ln|x+2√x+2| +C ,C为常数
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版