简单虚数题~~
已知方程 X^2-(tanθ+i)x-(i+2)=0
1.若方程有实根,求θ及其两根
2.证明无论θ为何值,此方程不可能有纯虚数根
人气:346 ℃ 时间:2020-03-30 10:12:49
解答
1.
-2 - tanθ x + x^2 - i (1 + x) = 0
x为实数则
-2 - tanθ x + x^2 =0,
i (1 + x) =0
于是x=-1,
-2+tanθ+1=0,
tanθ=1,
θ=π/4+kπ,k为整数.
于是-2 - x + x^2 - i (1 + x) = 0,
(1 + x) (-2 - i + x)=0
x=-1,或x=2+i.
2.
假定tanθ为实数,否则该题错误.
若方程有纯虚数根,则
-2 - tanθ x + x^2 - i (1 + x)中
tanθ x为纯虚数,或0.
-2 + x^2 - i (1 + x)为实数,
所以
tanθ x只能为0,与x是纯虚数矛盾.所以此方程不可能有纯虚数根.
推荐
猜你喜欢
- 若二次函数y=-x2+mx-1的图象与两端点为A(0,3),B(3,0)的线段AB有两个不同的交点,则m的取值范围是_.
- 已知lg2=0.3010,lg1.0718=0.0301,则2^1/10=?
- 并帮我分析一下其他的选项为什么错
- 高一英语,高手进,求解释原因!急急急,在线等
- 米芾学书这篇文章主要讲了一件什么事简单概括一下
- 一根轻质杠杆,在左右两端分别挂上200N和300N的重物时,杠杆恰巧平衡,若将两边重物同时减少50N,则杠杆
- 翻译none of the singers around the world can match her in special taste in haircuts and clothes
- 一个饲养场,养鸭1200只,(),养鸡多少只?补充问题!