> 数学 >
试说明:无论x,y取何值时,代数式(x3+3x2y-5xy+6y3)+(y3+2xy2+x2y-2x3)-(4x2y-x3-3x
试说明:无论x,y取何值时,代数式(x^3+3x^2y-5xy+6y^3)+(y^3+2xy^2+x^2y-2x^3)-(4x^2y-x^3-3xy^2+7y^3)的值是常数.
人气:216 ℃ 时间:2020-03-25 02:40:42
解答
(x^3+3x^2y-5xy【此处你抄错了应为:5xy^2】+6y^3)+(y^3+2xy^2+x^2y-2x^3)-(4x^2y-x^3-3xy^2+7y^3)
=x^3+3x^2y-5xy+6y^3+y^3+2xy^2+x^2y-2x^3-4x^2y+x^3+3xy^2-7y^3
=(x^3-2x^3+x^3)+(3x^2y+x^2y-4x^2y)+(-5xy^2+2xy^2+3xy^2)+(6y^3+y^3-7y^3)
=0+0+0=0
可知:代数式的值与x,y的取值无关.证毕
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版