设数列{a
n}满足a
1=2,a
n+1=a
n+3•2
n-1.
(1)求数列{a
n}的通项公式a
n;
(2)令b
n=na
n,求数列{b
n}的前n项和S
n;
(3)令c
n=log
2,证明:++…+<1(n≥2).
人气:375 ℃ 时间:2020-04-14 07:44:03
解答
(1)∵a1=2,an+1-an=3•2n-1,∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+3×20+3×21+3×22+…+3×2n-2=2+3(20+21+22+…+2n-2)=2+3×1(1-2n-1)1-2=3×2n-1-1(n≥2),经验证n=1也成立,∴an=3×2n-1-1;(...
推荐
猜你喜欢