设函数Y=(lnX)减X+1.函数最大值为0.证明:1+(1/2)+(1/3)+…+(1/n)大于ln(n+1)
人气:107 ℃ 时间:2020-05-14 15:37:34
解答
由题意,lnx-x+1≤0,即lnx≤x-1
代换t=x-1得ln(t+1)≤t
所以1+(1/2)+(1/3)+…+(1/n)>ln(2)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)=ln(2)+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]=ln[2*(3/2)*(4/3)*…*((n+1)/n)]=ln(n+1)
推荐
- 设函数f(x)=lnx-x+1(1)求函数的最大值;(2)证明:1+1/2+1/3...+1/n-1+1/n>ln(n+1)(n∈N*)
- 设函数f(x)=lnx+ln(2-x)+ax(a>0).(1)当a=1时,求f(x)单调区间;(2)若f(x)在(0,1]上的最大值为1/2,求a
- 设函数f(x)=lnx+ln(2-x)-ax(a大于0).(1)当a=1,求f(x)单调区间;(2)若f(x)在(0,1]上的最大值为1/2,求a值
- 设函数f(x)=lnx+ln(2-x)+ax(a大于0) (1)当a=1时,求f(x)单调区间;(2)若f(x)在(0,1]上的最大值为1/2,求a
- 设函数f(x)=lnx+ln(x+2)+ax(a>0),一a=1时求f(x)的单调区间.二若f(x)在(0,1]上的最大值为1...
- My sister is a student _____ No.1 Middle School _____ Shantou .
- 英语翻译
- 八年级下数学练习册(上海教育出版社) P65/7/(2)答案
猜你喜欢