已知数列{an} 的前 n 项和为sn=3的n次方,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n属于正无穷)
接上题:求数列{an}的通项公式an.正确解答如下:因为Sn=3的n 次方,所以Sn-1=3的n次方减1,(n大于等于2),所以an=Sn-Sn-1= 2^3的n次方减1(n大于等于2),当n=1时,2^3的1-1次方=2不等于S1=a1=3,所以an=3(n=1)或 2^3的n次方减1(n大于等于2).请问解答中的an=Sn-Sn-1= 2^3的n次方减1(n大于等于2)是由原来的an=Sn-Sn-1=3的n 次方-3的n次方减1 怎样化简过来得到 2^3的n次方减1的?快,答的好的额外再追加悬赏分~
人气:209 ℃ 时间:2019-08-21 12:52:31
解答
1
an=Sn-Sn-1=3^n-3^(n-1)=2 * 3^(n-1)
2
bn+1=bn+(2n-1)
bn=bn-1+(2n-3)
..
b2=b1+1
b1=-1
Sbn=Sbn-1 -1 +[1+(2n-3)](n-1)/2
Sbn-Sbn-1=(n-1)^2-1
bn=(n-1)^2-1谢谢,请问这里的 Sbn=Sbn-1 -1 +[1+(2n-3)](n-1)/2具体是怎样得到的?bn+1=bn+(2n-1)bn=bn-1+(2n-3)..b2=b1+1b1=-1b1+b2+..+bn=-1+(b1+b2+..+bn-1)+(1+2+..+2n-3)Sbn=Sbn-1 -1 +[1+(2n-3)](n-1)/2]
推荐
- 已知数列{an}的前n项和为Sn=3的n次方,数列{bn}满足b1=-1,b(n+1)=bn+(2n-1),若Cn=a
- 设an=2n-1,bn=2的n次方,求数列﹛an·bn﹜的前n项之和Sn.
- 已知数列 an 的前n项和为sn,满足an+Sn=3-8/2的n次方设bn=2的n次方乘an
- 已知数列{an}的前n项和Sn=2的n次方,数列{bn}满足b1=-1,b(n+1)=bn+(2n-1)(n=1,2,3…)
- 在数列{an}中,an+Sn=n2+2n-1,n属于N* 令bn=an*(1/2)的n-1次方,证:b1+b2+b3+.+bn
- 1.polite(反义词)2.swim(现在分词)
- 化简((cos20°/sin20°)cos10°)+根号3(sin10°tan70°)-2cos40°
- 英语翻译
猜你喜欢