∴
p |
2 |
∴轨迹方程为y2=4x.
(2)易知k=0时不符合题意,应舍去.
当k≠0时,设点M(
| ||
4 |
| ||
4 |
y2−y1 | ||||||||
|
1 |
k |
∵Q(x0,y0)在直线l上,
∴y0=kx0+3,∴x0=−
2k+3 |
k |
∵点Q在抛物线的内部,∴y02<4x0.
即(−2k)2<4×(−
2k+3 |
k |
k3+2k+3 |
k |
(k+1)(k2−k+3) |
k |
∵k2−k+3=(k−
1 |
2 |
11 |
4 |
k+1 |
k |
∴k(k+1)<0,解得-1<k<0.
∴k的取值范围是(-1,0).
p |
2 |
| ||
4 |
| ||
4 |
y2−y1 | ||||||||
|
1 |
k |
2k+3 |
k |
2k+3 |
k |
k3+2k+3 |
k |
(k+1)(k2−k+3) |
k |
1 |
2 |
11 |
4 |
k+1 |
k |