求y=(e^x-e^-x)/2的反函数,并写出它的定义域
人气:377 ℃ 时间:2020-01-27 16:16:23
解答
y=(e^x-e^-x)/2; 2y=e^x-e^(-x)=e^x-1/e^x
(e^x)^2-2ye^x-1=0; e^x=[2y±√(4y^2+4)]/2=y±√(y^2+1)
e^x>0; e^x=y+√(y^2+1); x=ln[y+√(y^2+1)]
所以反函数为:y=ln[x+√(x^2+1)]; 定义域为R
推荐
猜你喜欢
- 已知极限lim(x→∞)(x^2+1)/x+1-(ax+b)=0,求常数a,b
- 一块平行四边形的菜地,底80M,6M,这地共收油菜籽842.24千克,平均没公顷能收多少千克的油菜籽
- 时针和分针在一昼夜重合多少次?
- 等量同种电荷连线中点,电势不为零 为什么
- NaHCO3与Na2CO3反应
- 滴定操作时,为什么经过三十秒不褪色为终点
- 人类改变环境的能力超过其他生物的原因,为什么包括 产生了语言,大脑的发育,能制造工具这三方面?
- 已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH. 求证:△AEH≌△CGF.