如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是( )
A. 2005
B. 2006
C. 2007
D. 2008
人气:367 ℃ 时间:2019-10-23 07:47:34
解答
p=a2+2b2+2a+4b+2008,
=(a2+2a+1)+(2b2+4b+2)+2005,
=(a+1)2+2(b+1)2+2005,
当(a+1)2=0,(b+1)2=0时,p有最小值,
最小值最小为2005.
故选A.
推荐
猜你喜欢
- 10米是8米的( )%?算式?
- 一个长方形长减少26厘米宽减少8厘米面积减少1568平方厘米,这时正好是一个正方形.求原长方形周长
- Today,the weather is good,I do at home eggs Fried rice.Although I did,but I still careful of stirring.When I need to put
- in,her,are,the,pants,drawer.连词成句
- 若函数f(x)=a^²-2x(其中a>0,且a≠1)在R上有最大值,则满足loga(x-3)>0的取值范围
- 难溶于水的盐易溶于水的盐
- 一杯糖水,糖5克,水30克,另一杯,糖和糖水的比是1:6,第( )杯甜
- send us a copy of your sponsor letter and passport.家里人是sponsor怎么还要写信寄护照?