∫ dx/(x² + 2x + 3)
= ∫ dx/[(x + 1)² + 2]
令z = (x + 1)/√2,dz = (1/√2)dx
= ∫ √2•dz/(2z² + 2)
= √2/2•∫ dz/(z² + 1)
= (1/√2)arctan(z) + C
= (1/√2)arctan[(x + 1)/√2] + C有点不太明白,我刚刚学不定积分。。令z = (x + 1)/√2,dz = (1/√2)dx这思路是怎样的啊?z = (x + 1)/√2 = x/√2 + 1/√2dz = (x/√2)'dx + (1/√2)'dx = (1/√2)dx这个会吧?这题要运用公式∫ dy/(y² + a²) = (1/a)arctan(y/a)要令(x + 1)² + 2变为x² + a²,所以设√2*z = (x + 1),两边平方后,你会发现2z = (x + 1)²,代入得2z² + 2 = 2(z² + 1),就是x² + a²的形式,这里y = z,a = 1