∵梯形ABCD中,AD∥BC,AB=CD,
∴AC=BD,
∵AD∥BC,BE=AD,
∴四边形AEBD是平行四边形,
∴AE=BD,
∴AE=AC;
(2)四边形AFCD是菱形.
证明:∵AB⊥AC,F是BC的中点,
∴AF=BF=CF=
1 |
2 |
∵AD∥BC,
∴∠DAC=∠ACB,
∵AD=CD,
∴∠DAC=∠DCA,
∴∠DCA=∠ACB,
∵梯形ABCD中,AD∥BC,AB=CD,
∴∠ABC=∠DCB=2∠ACB,
∵AB⊥AC,
∴∠ACB=30°,
∴BC=2AB,
∵AD=AB=CD,
∴FC=AB=AD=CD=AF,
∴四边形AFCD是菱形.