怎么证明椭圆通径是过椭圆焦点最短的弦
人气:242 ℃ 时间:2020-03-26 22:25:40
解答
方法一:设出椭圆方程为x^2/a^+y^2/b^2=1,
过焦点F(c,0)的直线方程为x=my+c(这里不能设成y=k(x-c),因为通径的斜率不存在),
然后方程联立,利用弦长公式可整理成关于m的函数式,
从中求出当且仅当m=0时,弦长最短.
方法二:利用椭圆的第二定义,将椭圆上的点转化为点到相应准线的距离,利用梯形的几何性质可以很容易得到.
推荐
猜你喜欢
- 设z=yf(x^2-y^2),其中f(u)为可微分函数,证明y^2 əz/əx +xy əz/əy=xz
- 设集合A={1,2,3,4,5,6,7,8,9,10}求所有的集合A的3元子集合(含有3个元素的子集)元素的和
- 大师…这个越语ban dang lam j day?ban da ngu chua……翻译成中文是什么意思?
- 暑假里王阿姨买了一台柜式空调长0.5米宽0.6米这台空调占有的空间有多大?
- 2 4 198
- 何谓高斯投影?高斯投影为何要分带?如何进行分带?
- 40+40%x=60(要过程)
- 关于初中物理的压力压强