抛物线C1;y2=8x与双曲线C2:x2/a2-y2/b2=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,
且AF2=5,求双曲线C2的方程
人气:343 ℃ 时间:2019-08-18 06:56:04
解答
y^2=8x=2px,则p=4,焦点坐标是(2,0)
即F2(2,0),那么F1(-2,0)
设A坐标是(m,n)
AF2=m+p/2
5=m+2,m=3,则n^2=8*3,n=2根号6.
AF1=根号[(3+2)^2+(2根号6)^2]=7
故AF1-AF2=2a=7-5=2
a=1
b^2=c^2-a^2=4-1=3
双曲线方程是x^2-y^2/3=1
推荐
- 双曲线c1:x2/a2+y2/b2=1(a>b>0)的左准线为l,左焦点和右焦点分别为F1、F2,抛物线C2的准线l,焦点为F2,C1与C2l的一个交点为M,则lF1F2l/lMF1l-lMF1l/lMF2l等于?
- 设F是抛物线C1:y2=2px 的焦点,点A是抛物线与双曲线C2:x2 a2 -y2 b2 =1(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为
- 已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2:y2=2px(p>0)与双曲线C1共焦点,C1与C2在第一象限相交于点P,且|F1F2|=|PF1|,则双曲线的离心率为 _ .
- 已知双曲线C1:x2/a2-y2/b2的离心率为2,若抛物线C2:x2=2py的焦点到双曲线C1的渐近线的距离为2,若A,B是C2上两点且OA⊥OB,则直线AB与y轴的交点的纵坐标为
- 已知双曲线x2/a2-y2/b2=1(a>0 b>0)的离心率为2 若抛物线c2:X²=2py(p>0)的焦点到双曲线C1的渐近线的距
- "satisfied" "satisfying" "satisfactory"在意思和用法有什么区别?(最好例句说明)
- jay.you in a world of happiness?would you like me?you always love me .now i was left alone
- "我的梦想是拥有一辆新的自行车"英语怎么说
猜你喜欢