已知函数fx=ax^+1/bx+c(a,b,c∈R)是奇函数,又f(1)=2,f(2)=3.证明:当x>根号2/2,f(x)为增函数
人气:364 ℃ 时间:2019-08-18 21:45:14
解答
证明:
f(x)=(ax^2+1)/(bx+c)
f(1)=2,f(2)=3
f(1)=(a+1)/(b+c)=2………………(1)
f(2)=(4a+1)/(2b+c)=3………………(2)
f(-x)=(ax^2+1)/(-bx+c)=-f(x)=(ax^2+1)/(-bx+-c)
-bx+c=-bx-c…………………………(3)
由(1)至(3)式解得:
a=2,b=3/2,c=0
所以:f(x)=(2x^2+1)/(3x/2)=2(2x^2+1)/(3x)=(2/3)(2x+1/x)
所以:f(x)属于对勾函数
x>0时:
f(x)=(2/3)(2x+1/x)
>=(2/3)*2√2
当且仅当2x=1/x,x=√2/2时取得最小值
所以:x>√2/2时,f(x)是增函数
推荐
- 已知函数f(x)=ax^2+1/bx+c(a,b,c属于R)是奇函数,f(1)=2,f(2)=3 (1)求a,b,c的值.(2)证明:x>根号2/2时...
- 已知a>0,函数f(x)=ax-bx^2.当b>1时,证明:对任意x属于[0,1],|f(x)
- 已知a>0,函数f(x)=ax-bx的二次方当b>0时,若对任意x∈R都有f(x)≦1,证明a≦2根号b
- 函数F(X)=(根号下X^2+1)-aX证明:当a≥1时函数F(X)在区间(0,+∞)上是单调函数
- 设函数f(x)=根号x'2+1-ax,其中a>=1,证明:f(x)在区间[0,+&)上是单调递减函数
- 有关春秋战国诸侯争霸的成语
- 铝合金硬质阳极氧化
- 汉译英:只有一句话,关于地理自然环境方面的,
猜你喜欢