已知球的半径为R,球内接圆柱底面半径为r,高为h,则r和h为何值时,内接圆柱的体积最大?
人气:152 ℃ 时间:2019-10-14 06:51:42
解答
由题意知球心在内接圆柱轴上高的中点,则有:
R²=r²+(h/2)²即h²=4R²-4r²
以下用基本不等式来求体积最大值
因为内接圆柱的体积V=πr²h,即V²=π²r²r²h²
所以V²=π²r²r²(4R²-4r²)
=π²/4 *(2r²)(2r²)(4R²-4r²)
又(2r²)(2r²)(4R²-4r²)≤{[(2r²)+(2r²)+(4R²-4r²)]/3}³=64(R²)³/27 (当且仅当2r²=4R²-4r²即3r²=2R²时取等号)
所以当r=√6*R/3,h=2√3*R/3时,V²有最大值π²/4 ×64(R²)³/27=16π²(R²)³/27
即内接圆柱的体积有最大值:4√3×πR³/9
推荐
- 已知球的半径为R,球内接圆柱的底面半径为r,高为h,则r和h为何值时,内接圆柱的体积最大?
- 已知球的半径为R,球内接圆柱底面半径为r,高为h,则r和h为何值时,内接圆柱的体积最大?
- 均值不等式:已知球的半径为R,球内接圆柱的底面半径为r,高为h,则r和h为何值时,内接圆柱的体积最大?
- 求半径为R的球的内接圆柱的体积的最大值,且求出圆柱体积最大时的底面半径.
- 已知半径为R的球,问内接直圆柱的底半径r与高h为多少时,圆柱的体积为最大?
- 方程组x+2y=1,3x+4y=1 的解是什么
- 诛九族一般要杀多少人?
- 证明次氯酸是弱酸
猜你喜欢