已知数列{an}满足a1=0,对任意k∈N*,有a2k-1 a2k a2k+1成公差为k的等差数列,数列bn=(2n+1)^2/a2n+1,则{bn}的前n项和Sn=?
人气:140 ℃ 时间:2020-04-03 01:11:43
解答
a(2k)-a(2k-1)=k (1)
a(2k+1)-a(2k)=k (2)
(1)+(2)
a(2k+1)-a(2k-1)=2k
a(2n+1)-a(2n-1)=2n
a(2n-1)-a(2n-3)=2(n-1)
…………
a3-a1=2
累加
a(2n+1)-a1=2(1+2+...+n)=2n(n+1)/2=n(n+1)
a(2n+1)=a1+n(n+1)=0+n(n+1)=n(n+1)
bn=(2n+1)²/a(2n+1)=(2n+1)²/[n(n+1)]=[(2n+1)/n][(2n+1)/(n+1)]
=(1/n +2)[(2n+2-1)/(n+1)]
=(1/n +2)[2 -1/(n+1)]
=2/n -1/[n(n+1)]+4 -2/(n+1)
=2/n -1/n +1/(n+1) -2/(n+1) +4
=1/n -1/(n+1) +4
Sn=b1+b2+...+bn=[1/1-1/2+1/2-1/3+...+1/n-1/(n+1)]+4n
=[1-1/(n+1)]+4n
=n/(n+1) +4n
推荐
- 在数列{an}中,a1=0,且对任意k∈n,a2k-1,a2k,a2k+1成等差数列,其公差为2k.(1)证明a4,a5,a6成等比数列;(2
- 在数列{an}中,a1=0,且对任意k∈N+,a2k-1,a2k,a2k+1成等差数列,其公差为2k. (Ⅰ)证明a4,s5,a6成等比数列; (Ⅱ)求数列{an}的通项公式.
- 在数列{an}中,a1=0,且对任意K∈正整数,a2k-1,a2K+1成等差数列,其公差为2K,(1)证明a4,a5,a6成等比数列
- 在数列{an}中,a1=0,且对任意k∈N+,a2k-1,a2k,a2k+1成等差数列,其公差为2k. (Ⅰ)证明a4,s5,a6成等比数列; (Ⅱ)求数列{an}的通项公式.
- 在数列{An}中,A1=0,且对任意K属于正整数,A2k-1,A2k,A2k-1成等差数列,其公差为2k.(1)证明...
- 2011年数学新课堂北师大版99页7年级上册拓展与延伸怎么做?
- 1.1mol二甲醚分子中含有____mol碳原子,_____mol氢原子
- 合并同类项要注意:————都是同类项,同类项与系数大小——————,与所含字母的顺序——————.
猜你喜欢