过抛物线y2=2px(p大于0)焦点的直线交抛物线两点的纵坐标为Y1.Y2.求证:Y1Y2=-P2
人气:230 ℃ 时间:2020-03-25 06:37:34
解答
(1).若该弦垂直于x轴,直接好证明.
(2).若不垂直,设直线为y=k(x-p/2)
又因为y^2=2px
联立方程消X 可得:y^2-2Py/k-p^2=0
由韦达定理可知:y1y2=-p^2
推荐
- 过抛物线y^2=2px焦点的一条直线和抛物线相交,两个交点的纵坐标为y1,y2,求证y1y2=-p^2
- 抛物线的焦点弦交抛物线于A(x1,y1)、B(x2,y2),那么可以得到结论:x1x2=p2/4,y1y2=-p2,如何推证的?
- 过抛物线y^2=2px(p>0)的焦点作一条直线交抛物线与A(x1,y1),B(x2,y2),则y1y2/x1x2为多少?
- 经过抛物线Y^2=2px(p>0)的焦点直线交抛物线于P1(x1,y1),P2(x2,y2)两点,则X1X2=?Y1Y2=?
- 过抛物线y^2=2px(p>0)的焦点作一条直线交抛物线与A(x1,y1),B(x2,y2),则y1y2/x1x2的值是
- 在原子中,下列关系不成立的是 a:质子数=电子数 b:质子数=中子数 C:核电荷数=质子数 B:核电荷数=电子数
- 有一个笼子里有鸡兔共35只,有脚94只,问鸡和兔各有多少只?
- 通Z轴和点(-3,1,-2)的平面方程
猜你喜欢