用因式分解法解下列方程:
(1)(x+2)2=3x+6;
(2)(3x+2)2-4x2=0;
(3)5(2x-1)=(1-2x)(x+3);
(4)2(x-3)2+(3x-x2)=0.
人气:113 ℃ 时间:2020-03-27 08:35:18
解答
(1)原方程可变形为
(x+2)(x+2-3)=0,
(x+2)(x-1)=0.
x+2=0或x-1=0.
∴x
1=-2,x
2=1.
(2)原方程可变形为
(3x+2-2x)(3x+2+2x)=0,
即(x+2)(5x+2)=0.
x+2=0或5x+2=0.
∴x
1=-2,x
2=-
.
(3)原方程可变形为
(2x-1)(5+x+3)=0,
即(2x-1)(x+8)=0
2x-1=0或x+5=0
∴x
1=
,x
2=-8.
(4)原方程可变形为
2(x-3)
2-x(x-3)=0,
(x-3)(2x-6-x)=0,
(x-3)(x-6)=0.
x-3=0或x-6=0.
∴x
1=3,x
2=6.
推荐
猜你喜欢
- 函数f(x)=x-arcsinx的单调递减区间为
- 甲、乙两数的平均数是78,甲数与乙数的比是5:8,甲、乙两数各是多少?
- 关于X的方程 log以1/2为底(a—根号下x-1)=0存在实数根,则a的取值范围
- 泊的多音字、呛的多音字、稽的多音字、晃的多音字 形近字蛊、盅,形近字廖、寥,形近字戮、谬,形近字噗
- 设A,B两事件独立,P(B)=0.7,P(A)=0.3,求P(A-B).
- 分析一段话.
- What would Amy like?的回答
- 计算负2的1999次方加负2的2000次方