已知f(x)=ax²+bx+3a+b是偶函数,定义域为〔a-1,2a〕求a,b的值
人气:418 ℃ 时间:2019-08-21 06:30:28
解答
∵定义域应关于原点对称,
故有a-1=-2a,
得a=1/3
又∵f(-x)=f(x)恒成立,
即:ax²+bx+3a+b=ax²-bx+3a+b
∴b=0.
故答案为:a=1/3b=0
推荐
- 已知f(x)=ax²+bx+3a+b是偶函数,定义域为〔a-1,2a〕,则f(1/2)是多少
- 若f(x)=ax²+bx+3a+b为偶函数,且定义域为[a-1,2a],则a=?,b=?.
- 已知函数f(x)=ax²+bx+3a+b是偶函数且定义域[a-1,2a]则a=?b=?
- 已知f(x)=ax²+bx+5a-b是偶函数,定义域是[a-1,3a],则a+b的值为___
- f(x)=ax²+bx+3a+b是偶函数,定义域为【a-1,3a】,则a-b=?
- 底面积乘高用字母怎么表示?
- 怎么才能理解汉语词语的意思.
- 爸爸妈妈给贝贝存了2万元教育存款,存期为三年,年利率为5.00%,到期一次支取,贝贝到期可以拿到多少钱?
猜你喜欢