设数列{an}的前n项和为Sn,其中an不等于0.a1为常数,且-a1,Sn,a(n+1)成等差数列
设BN=1-SN,是否存在A1,使数列{BN}为等差数列?若存在,求出A1,若不存在说明理由
人气:388 ℃ 时间:2019-08-19 05:29:51
解答
由三者成等差数列知a(n+1)-Sn=Sn+a1,即2*Sn=a(n+1)-a1
由bn=1-Sn知,b(n+1)-bn=1-S(n+1)-1+Sn=Sn-S(n+1)=0.5*[a(n+1)-a1-a(n+2)+a1]=0.5*[a(n+1)-a(n+2)]很明显如果数列{an}是等差数列,则{bn}就是等差数列.
若{an}为等差数列则2*Sn=a1+a(n)=a(n+1)-a1可推出,2a1=a(n+1)-a(n)恒成立,故不论a1取什么,均为等差数列
推荐
- 设数列{an}的前n项和为Sn,其中an不等于0.a1为常数,且-a1,Sn,a(n+1)成等差数列,求{an}的通项公式
- 设数列{an}的前n项和为Sn,其中an不等于0,a为常数,且-a1,sn,an+1成等差数列,求{an}的通项公式
- 设数列{an}的前n项和为Sn,其中an不等于 ,21为常数,且-a1,Sn,an+1成等差数列.求{an}的通项公式
- 设数列{an}的前n项和为Sn,其中an不等于0.a1为常数,且-a1,Sn,a(n+1)成等差数列,设Bn=1-Sn,问是否存在a1,
- 数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2, (1)求常数p的值; (2)证明:数列{an}是等差数列.
- 根茎叶有什么发育而来
- The rapid development of communications technology is transforming the ____ in which people communicate across time and
- 木炭燃烧时有多高温度
猜你喜欢