∵将直线y=| 1 |
| 2 |
∴平移后直线的解析式为y=
| 1 |
| 2 |
分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,
| 3 |
| 2 |
∵OA=3BC,BC∥OA,CF∥x轴,
∴△BCF∽△AOD,
∴CF=
| 1 |
| 3 |
∵点B在直线y=
| 1 |
| 2 |
∴B(x,
| 1 |
| 2 |
∵点A、B在双曲线y=
| k |
| x |
∴3x•
| 3 |
| 2 |
| 1 |
| 2 |
∴k=3×1×
| 3 |
| 2 |
| 9 |
| 2 |
故选D.
| 1 |
| 2 |
| k |
| x |
| 1 |
| 2 |
| k |
| x |
A. 3| 9 |
| 4 |
| 9 |
| 2 |
∵将直线y=| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| k |
| x |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 9 |
| 2 |