> 数学 >
对于数列{an}任意n∈N*数列{an+a(n+1)}是公差为1的等差数列,且a1a2,a2a3,a3a4成公差为2的等差数列,求{an}通项公式(a1=1,a2=2,a3=2,a4=3)
人气:456 ℃ 时间:2020-02-26 01:37:27
解答
依题意得 an+a(n+1)=(a1+a2)+(n-1)*1=3+n-1=n+2  ①
从而得到 a(n+1)+a(n+2)=n+3   ②
②-①得 a(n+2)-an=1,a(n+2)=1+an
于是 当n为奇数时,an=1+(n-1)/2=(n+1)/2
当n为偶数时,an=2+(n-2)/2=(n+2)/2
利用(-1)^n,以上两种情形可统一为 an=[2n+3+(-1)^n]/4
这就是要求的通项公式
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版