设{an}是等差数列,且首项a1>0,公差d>0求证:1/a1a2+1/a2a3+…+1/anan+1=n/a1(a1+nd)
人气:209 ℃ 时间:2019-11-06 18:56:08
解答
1/a1a2+1/a2a3+…+1/anan+1
= [ (a2-a1)/a1a2+(a3-a2)/a2a3+…+(a(n+1)-a(n))/anan+1 ] /d
=[ 1/a1 - 1/a2 + 1/a2 - 1/a3 +...+ 1/an - 1/a(n+1) ] /d
=[ 1/a1 - 1/a(n+1) ] /d
=(a(n+1)-a1)/a1a(n+1)d
=nd / a1a(n+1)d
=n/a1(a1+nd)
推荐
- 等差数列{1\an}满足a1=1,公差d=2,求a1a2+a2a3+……+anan+1的和
- 已知等差数列an首项a1>0,公差d>0,设Tn=1/a1a2+1/a2a3+...+1/anan+1,则limTn=?
- 等差数列公差为d,1/a1a2+1/a2a3+.1/anan+1=?
- 已知等差数列公差为d,1/a1a2+1/a2a3+…+1/anan+1可化简为
- 已知数列{an},若1/a1a2+1/a2a3+…+1/anan-1=n/anan+1,求证{an}为等差数列.
- 请教高一化学题 有关四氯化碳和水的鉴别
- 英语翻译
- 如果关于字母x的式子﹣3x²+mx+nx²-x+3的值与x的值无关,求m,n
猜你喜欢