如图,P,Q分别是直角三角形ABC的两直角边AB,AC上的点,M是斜边BC的中点,且PM⊥QM,若PB=a,QC=b,则PQ等于多少?
人气:274 ℃ 时间:2020-05-23 10:15:50
解答
延长QM到D,使得QM=MD;连接BD,连接PD.
观察三角形PQD,PM是其的中线,同时根据题意也是DQ边上的高,所以可得三角形PQD为等腰三角形,PQ=PD.
由于M是BC的中点,加上MQ=MD,所以三角形CMQ全等于三角形BMD.
所以 BD=CQ=b.
观察三角形BDP,BD平行于CA,所以BD垂直于AB,所以三角形BDP为RT三角形.
根据勾股定理,PD=根号下(a^2+b^2),所以PQ=PD=根号下(a^2+b^2)
推荐
- 如图:已知M是Rt△ABC的斜边BC的中点,P、Q分别在AB、AC上且BP=5,CQ=3,PM⊥QM,则PQ为( ) A.34 B.4 C.34 D.17
- 点M是直角三角形ABC斜边CB的中点,点P在AB上且AP∶PB=1:2,连结PM,QM⊥PM于M,交AC于Q点,求AQ:QC的值
- 已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.
- 直角三角形ABC中,M是斜边AB的中点,PM垂直平面ABC,PM=AC=a,求P到BC边的距离
- 已知:在三角形ABC中,分别以AB,AC为斜边做等腰直角三角形ABM,和三角形CAN,P是边BC的中点.求证:PM=PN
- Unit11
- 关于体液免疫,B细胞分化为浆细胞的过程
- There is a bank _______(在……对面) the street
猜你喜欢