(1)证明:取AC中点D,连接SD,DB.因为SA=SC,AB=BC,所以AC⊥SD且AC⊥BD,
因为SD∩BD=D,所以AC⊥平面SDB.
又SB⊂平面SDB,所以AC⊥SB;
(2)因为AC⊥平面SDB,AC⊂平面ABC,所以平面SDC⊥平面ABC.
过N作NE⊥BD于E,则NE⊥平面ABC,
因为平面SAC⊥平面ABC,SD⊥AC,所以SD⊥平面ABC.
又因为NE⊥平面ABC,所以NE∥SD.
由于SN=NB,所以NE=
| 1 |
| 2 |
| 1 |
| 2 |
所以S△CMB=
| 1 |
| 2 |
3
| ||
| 2 |
所以VB-CMN=VN-CMB=
| 1 |
| 3 |
| 1 |
| 3 |
3
| ||
| 2 |
| 1 |
| 2 |
| ||
| 4 |

