①a>0时,f'(x)=3ax2+2x-1是开口向上的抛物线.
显然f'(x)在(2,+∞)上存在区间,使f'(x)>0即a>0适合.
②a<0时,f'(x)=3ax2+2x-1是开口向下的抛物线.
要使f'(x)在(2,+∞)上存在区间有f'(x)>0,则f'(x)=3ax2+2x-1=0在(2,+∞)上有一解或两解.
即f'(2)>0或
|
1 |
4 |
又a<0∴a∈(−
1 |
4 |
综合得a∈(−
1 |
4 |
(2)不存在实数a,b,c满足条件.
事实上,由f(x1)=f(x2)得:a(x13-x23)+b(x12-x22)-(x1-x2)=0
∵x1≠x2∴a(x12+x1x2+x22)+b(x1+x2)-1=0
又f'(x)=3ax2+2bx-1
∴f′(
x1+x2 |
2 |
x1+x2 |
2 |
x1+x2 |
2 |
=3a•
| ||||
4 |
x | 21 |
x | 22 |
a |
4 |
∵a≠0且x1−x2≠0∴f′(
x1+x2 |
2 |
故不存在实数a,b,c满足条件.