> 数学 >
方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有(  )
A. 60条
B. 62条
C. 71条
D. 80条
人气:338 ℃ 时间:2020-02-02 23:12:21
解答
方程变形得y=
b2
a
x2+
c
a
,若表示抛物线,则a≠0,b≠0,所以分b=-3,-2,1,2,3五种情况:
(1)当b=-3时,a=-2,c=0,1,2,3或a=1,c=-2,0,2,3或a=2,c=-2,0,1,3或a=3,c=-2,0,1,2;
(2)当b=3时,a=-2,c=0,1,2,-3或a=1,c=-2,0,2,-3或a=2,c=-2,0,1,-3或a=-3,c=-2,0,1,2;
以上两种情况下有9条重复,故共有16+7=23条;
(3)同理当b=-2或b=2时,共有16+7=23条;
(4)当b=1时,a=-3,c=-2,0,2,3或a=-2,c=-3,0,2,3或a=2,c=-3,-2,0,3或a=3,c=-3,-2,0,2;
共有16条.
综上,共有23+23+16=62种
故选B.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版