在小于1000的非0自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)
人气:188 ℃ 时间:2019-08-18 04:58:02
解答
18=2×3×3,
33=3×11,
所以18和33的最小公倍数是:2×3×3×11=198;
1~198之间只有1,2,3,…,17,198这18个数除以18及33所得的余数相同,
而999÷198=5…9,
所以共有5×18+9=99个这样的数.
答:分别除以18及33所得余数相同的数有99个.
推荐
猜你喜欢
- 他投进了一个球用英语怎么说
- 怎样促进班级团结(初一)
- 长方形的体积一定 底面积和高 说明理由 说明是什么比例
- 解关于x的不等式:ax-(a+1)x+1<0
- 四棱锥P-ABCD中,PA垂直于面ABCD,AB=4,BC=3,AD=5,角ABC=角DAB=90°,E为CD中点,
- 欲使含有少量水蒸气、氢气、CO、二氧化碳的氮气,可以使混合气体先通过足量的————,再通过————,最后通过浓——.
- 已知a=3m-2n,b=(x+1)m+8n,a≠0,若a平行b,求实数x
- 如图:在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.