> 数学 >
设实数s,t分别满足19s²+99s+1=0,t²+99t+10=0,并且st≠1,求(st+4s+1)/t的值.
人气:195 ℃ 时间:2019-10-19 22:23:40
解答
因为:t^2+99t+19=0 ,两边同时除以t^2,得
所以:19*(1/t)^2+99*(1/t)+1=0,
又因为:19s^2+99s+1=0,且s≠1/t,
所以有:s和1/t是一元二次方程:19x^2+99x+1=0的两根.
则:s+1/t=-99/19,s*1/t=1/19
而:(st+4s+1)/t=s+1/t+4*s/t=-99/19+4*1/19=-5
【学习顶起】团队为您答题.
请点击下面的【选为满意回答】按钮.
我注意你很久了
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版