∴sinAsinB+sinAcosB-sin(A+B)=0.
∴sinAsinB+sinAcosB-sinAcosB-cosAsinB=0.
∴sinB(sinA-cosA)=0.
因为B∈(0,π),所以sinB≠0,从而cosA=sinA.
由A∈(0,π),知A=
| π | 
| 4 | 
| 3 | 
| 4 | 
由sinB+cos2C=0得sinB+cos2(
| 3 | 
| 4 | 
即sinB-sin2B=0.亦即sinB-2sinBcosB=0.
由此得cosB=
| 1 | 
| 2 | 
∴B=
| π | 
| 3 | 
| 5π | 
| 12 | 
| π | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 4 | 
| 1 | 
| 2 | 
| π | 
| 3 | 
| 5π | 
| 12 |