∴sinAsinB+sinAcosB-sin(A+B)=0.
∴sinAsinB+sinAcosB-sinAcosB-cosAsinB=0.
∴sinB(sinA-cosA)=0.
因为B∈(0,π),所以sinB≠0,从而cosA=sinA.
由A∈(0,π),知A=
| π |
| 4 |
| 3 |
| 4 |
由sinB+cos2C=0得sinB+cos2(
| 3 |
| 4 |
即sinB-sin2B=0.亦即sinB-2sinBcosB=0.
由此得cosB=
| 1 |
| 2 |
∴B=
| π |
| 3 |
| 5π |
| 12 |
| π |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| π |
| 3 |
| 5π |
| 12 |