已知函数f(x)=2x³-3x²-36x+16
若方程f(x)=a有三个不同的根,求实数a的取值范围(我算出这个函数单调递增区间为(3,正无穷)∪(负无穷,-2),单调递减区间为(-2,3).
人气:232 ℃ 时间:2020-01-26 00:21:22
解答
若有三个实数根
那么
极大值f(-2)>0 极小值f(3)<0能帮我往下算出结果吗?由你已求得的单调区间可以得到两个极值点
方程化为f(x)=2x³-3x²-36x+16-a=0
若方程有三个实数根。根据图像,则满足极大值f(-2)>0 极小值f(3)<0
f(-2)=60-a>0 即为60>a
f(3)=-65-a<0即为a>-65
所以a的取值范围为(-65,60)
推荐
猜你喜欢
- 一批货,大车要运16辆,小车要运48辆才能运完.大车比小车每车多运4吨.请问这批货有多少?
- 《蒙娜丽莎之约》练习题
- “重温老师给你留下的难忘回忆,写信给老师”的作文怎么写
- 依法纳税是每个公民应尽的义务,小芳的妈妈上个月的工资总额是2000元,按照个人所得税法规定,超过2000元
- 齐次方程组x1+x2=0,x2-x4=0,基础解系为k1(0,0,1,0)^T+k2(-1,1,0,1)^T,问第一个解向量 是怎么得来的
- 大地怎么造句
- 为什么一般情况下,弱电解质浓度越大,电离度小?特殊情况是指?
- 类似于日日行,不怕千万里;常常做,不怕千万事的名句?