半径为R 圆心角45°扇形铁皮 求最大面积内接矩形
一块半径为R 圆心角45°扇形铁皮,为了获取最大面积的矩形铁皮,工人师傅让矩形的一边在扇形的半径上,然后做最大内接矩形,试问工人师傅是如何选择四个顶点,并求其最大植.
人气:118 ℃ 时间:2020-03-29 06:33:39
解答
扇形OAB中,∠AOB=45°,OA=OB=R,在上选一点P,作PN⊥OA于N,PQ‖OA交OB于Q,再作QM⊥OA于M得矩形PQMN.连结OP,设∠POA=α,
则OP=R,0°<α<45°.
于是PN=OPsinα=Rsinα,ON=OPcosα=Rcosα,
∴MN=ON-OM=ON-MQtan45°=ON-MQ=ON-PN=Rcosα-Rsinα.
∴矩形PQMN的面积
S=MN·PN=R(cosα-sinα)·Rsinα
=R2(sinαcosα-sin2α)
=(sin2α+cos2α-1)
=R2sin(2α+45°)-.(0°<α<45°)
∴当sin(2α+45°)=1,即α=22.5°时,S最大=R2.
推荐
猜你喜欢
- 英语.Where are the children -They _____(sleep) in
- 帮我解方程2×1.5x-x=64
- 好词,好句,好段,家长的感受的读书笔计
- 我在写作业,字典没拿,帮解释一下"慰藉"什么意思.详细一点
- 林冲棒打洪教头故事梗概,急
- do you mind my talking loundly =do you mind ___ I ___ loundly
- 已知函数f(x)=-x四次方+2x平方+3,(1)求函数f(x)的极值(2)当x属于【-3,2】时,求函数的值域
- 某车场第一车间有32人,若从第一车间调8人到第二车间,则第二车间的人数比第一车间多二分之一.原来那个车间的人数多?多多少人?