>
数学
>
证明:对任意的正整数n,有1/1×3+1/2×4+1/3×5+.+1/n(n+2)
人气:447 ℃ 时间:2020-02-05 07:56:48
解答
原式=1/2[1-1/3+1/2-1/4+1/3-1/5+.+1/n-1/(n+2)]
=1/2[1+1/2-1/n-1/(n+2)]
=3/4-1/n-1/(n+2)
推荐
2.对于任意正整数,定义n!=1×2×3×4×…×n.例如,5!=1×2×3×4×5,那么1!+2!+3!+…+2003!和的个位数字是几?
1*2+2*3+3*4+4*5+…+n(n+1)(n为正整数)
3)1-2+3-4+5-6+…+(-1)^n+1 n(n为正整数)
1-2+3-4+5-6+……+(-1)n+1n(n为正整数 n+1在上面)
计算啊.
那0.32毫安等于多少安啊?
角字头偏旁是什么?
语文改错啦!改错啦!
猜你喜欢
she could answer it.转为疑问句
3.14*R的平方=2*3.14*R*5怎么解?
动物的"体表面积与体积之比"是什么意思?
用20N的力为什么能拉50N的物体?
生鸡蛋和熟鸡蛋以同速同力度开始旋转哪个先停?为什么?用惯性的物理知识解答.
铁和硫酸发生反应生成什么?
tan10+tan50+tan120/tan10tan50 等于多少 万分感谢、、、
1.已知二次函数y=ax平方+bx+c的图像的顶点为(1,-2分之9),且经过(-2,0),求二次函数的关系式.(要有过程,)
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版